

Recent Results and Mission Update for the Atmospheric Chemistry Experiment (ACE)

Kaley A. Walker^{1,2}, Chris Boone², Peter Bernath^{3,4}, Christopher Sioris⁵, and C. Thomas McElroy⁵

¹Physics, University of Toronto; ²Chemistry, University of Waterloo; ³Chemistry and Biochemistry, Old Dominion University; ⁴Chemistry, University of York (UK); ⁵Earth and Space Science and Engineering, York University

Aura Science Team Meeting - Helsinki, Finland - 13 September 2011

ACE on SCISAT-1

Atmospheric Chemistry Experiment (ACE) Satellite Mission:

Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure

Launch date: August 12, 2003

Orbit: 74° inclination at 650 km

Measurement mode: solar occultation

ACE-FTS:

- FTIR spectrometer, 2-13 microns at 0.02 cm⁻¹ resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

MAESTRO:

 dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution

Pointing: suntracker in ACE-FTS

ACE Mission Status

- Now into 9th year in orbit designed for 2 year lifetime
 - Starting to see some degradation in ACE-FTS performance and MAESTRO continues to "age gracefully"
- Since launch, satellite and instrument operations nominal
 - On 12 September 2011, SCISAT completed its 43,500th orbit!
 - − Profiles available for ~70% occultations
 - $-\sim 50\%$ of occultations occur in polar regions (> 60 degrees)
- Operation of ACE mission approved until end of March 2012
 - Are discussing continuation plans with CSA

ACE Data Products

- ACE-FTS profiles (current version 3.0; previous v2.2+updates):
 - Tracers: H₂O, O₃, N₂O, NO, NO₂, HNO₃, N₂O₅, H₂O₂, HO₂NO₂, N₂
 - Halogen-containing gases: HCl, HF, ClONO₂, CFC-11, CFC-12, CFC-113,
 COF₂, COCl₂, COFCl, CF₄, SF₆, CH₃Cl, CCl₄, HCFC-22, HCFC-141b,
 HCFC-142b
 - Carbon-containing gases: CO, CH₄, CH₃OH, H₂CO, HCOOH, C₂H₂, C₂H₄,
 C₂H₆, OCS, HCN and pressure / temperature from CO₂ lines
 - Isotopologues: Minor species of H₂O, CO₂, O₃, N₂O CO, CH₄, OCS
 - Research species: ClO, acetone, PAN (peroxyacetyl nitrate), etc.
- MAESTRO profiles (validated version 1.2; version 3.0 being tested):
 - O₃, NO₂, and optical depth (water vapor and aerosol for v3.0)
- IMAGERS profiles (validated version 2.2; version 3.0 being tested):
 - Atmospheric extinction at 0.5 and 1.02 microns (aerosols in v3.0)

HCFC-22 Zonal Mean Climatology

• CHF₂Cl has 12 year lifetime. It was introduced as replacement for CFC-11 and CFC-12 and is now being phased out

ACE HCFC-22 vs. GMI Combo Model

• Using MERRA, over similar time periods Jan 2004-May 2011

ACE Monthly CO₂: 2004 - 2008

Normal ACE-FTS retrieval uses constant CO₂ VMR to get T, p and tangent heights.

Use N₂ continuum instead and then retrieve CO₂ VMR in 5-25 km altitude range.

Less than 2 ppm offset between ACE and CARIBIC seen

P.-Y. Foucher et al., ACP, 11, 2455-2570 (2011)

BORTAS Campaign

 Quantifying the impact of <u>BOR</u>eal forest fires on <u>Tropospheric oxidants over the Atlantic using Aircraft and Satellites</u> (PI: Paul Palmer, Edinburgh)

• UK FAAM aircraft flights in 10 July - 3 Aug. 2011 out of Halifax;

• Focus on analysis of satellite data and detailed chemical modelling of fire plumes (in situ sampling, ground-based obs., modelling and

satellites)

	C ₂ H ₂	C ₂ H ₆	CH ₃ OH	CH₄	H ₂ CO	HCN	нсоон	HNO ₃	N ₂ O ₅	NO	NO ₂	O ₃	ocs
Siomass Source	(87)30		7.75.01		1.000			0000	575 1525		-		
Amazon	0.918	0.939	0.937	0.155	0.702	0.932	0.885	0.149	0.815	0.296	0.971	-0.896	0.478
	0.0014 (0.0360)	0.0050 (0.0711)	0.0212 (0.2930)	0.2311 (51.39)	0.0009 (0.0289)	0.0030 (0.0374)	0.0024 (0.0414)	0.0006 (0.1444)	0.0007 (0.0467)	0.0004 (0.0379)	0.0014 (0.1031)	-0.6813 (30.11)	0.0002 (0.0204)
Congo	0.962	0.942	0.926	0.038	0.890	0.953	0.924	-0.301	0.896	0.251	0.201	-0.816	0.291
	0.0021 (0.0247)	0.0063 (0.1037)	0.0192 (0.3399)	0.0717 (71.45)	0.0007 (0.0271)	0.0052 (0.0942)	0.0027 (0.0923)	-0.0010 (0.1196)	0.0007 (0.0794)	0.0002 (0.0405)	0.0001 (0.1502)	-0.5374 (27.78)	0.0002 (0.0161)
Australia	0.951	0.918	0.840	0.265	0.723	0.806	0.859	-0.872	0.867	0.591	-0.831	-0.926	0.509
	0.0014 (0.0178)	0.0048 (0.0671)	0.0098 (0.2895)	0.2300 (69.19)	0.0012 (0.0354)	0.0055 (0.0662)	0.0023 (0.0816)	-0.0010 (0.0861)	0.0015 (0.0367)	0.0004 (0.0094)	-0.0007 (0.0839)	-1.3131 (32.11)	0.0001 (0.0132)
Background	0.442	0.348	0.586	0.026	0.303	0.246	0.322	0.197	0.065	-0.128	0.221	-0.326	0.046
	0.0009 (0.0170)	0.0032 (0.1109)	0.0096 (0.1591)	0.2413 (88.65)	0.0024 (0.0285)	0.0009 (0.0500)	0.0049 (0.0704)	0.0011 (0.1218)	0.0004 (0.0625)	-0.0007 (0.0425)	0.0027 (0.0967)	-0.6948 (35.79)	0.0001 (0.0431,
Canada Boreal	0.719	0.931	0.846	0.095	0.832	0.613	0.928	-0.858	0.005	0.888	-0.885	-0.909	0.019
	0.0013 (0.0267)	0.0048 (0.1065)	0.0217 (0.6299)	0.2857 (72.14)	0.0011 (0.0335)	0.0013 (0.0354)	0.0034 (0.1074)	-0.0121 (0.0906)	0.0001 (0.0307)	0.0012 (0.0933)	-0.0003 (0.1028)	-2.134 (34.32)	0.0001 (0.0331)
Background	0.594	0.512	0.109	0.136	0.274	0.360	0.269	-0.231	0.052	0.209	-0.257	-0.555	0.160
	0.0012 (0.0172)	0.0071 (0.1134)	0.0347 (0.4629)	2.741 (93.24)	0.0015	0.0005	0.0030 (0.0429)	-0.0084 (0.3884)	0.0002 (0.0625)	0.0028	-0.0021 (0.1397)	-2.500 (127.43)	0.0002

K. Tereszchuk et al., ACPD, 11, 16611-16637 (2011)

MAESTRO Aerosol Extinction

- As part of new v3.0
 aerosol products,
 MAESTRO aerosol
 extinction profiles
 are being calculated
 across the VIS band
- Also, Angstrom coefficient profiles are being developed
- Example showing aerosol layer (at ~16 km) from Sarychev eruption

Beyond ACE?

SAGE III will be deployed on ISS in ~2015 timeframe

• Currently, no missions approved to continue the series of infrared solar occultation measurements

Opportunities being pursued as available - mainly for ISS

- Industrial and science studies for ACE-FTS and nextgeneration FTS instrument are continuing with CSA
- iATMOS is being proposed to NASA Earth Venture-2 call for ISS deployment (PI: W. Randel, NCAR)
- LOI submitted for ESA call for ISS experiments relevant to Global Climate Change due in early November 2011

Summary

- ACE Instruments and satellite are continuing to function nominally and produce excellent results
- Data being used for scientific and validation studies
 - Reprints available from http://www.ace.uwaterloo.ca
 - Validation results published in *Atmos*. *Chem. Phys.*:
 http://www.atmos-chem-phys.net/special_issue114.html

Funding for ACE and this work provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada
- Environment Canada
- Canadian Foundation for Climate and Atmospheric Sciences
- Natural Environment Research Council (NERC)

Angstrom Coefficients

